

AN APPROACH TO DETECT COMMON COMMUNITY SUB-GRAPH

BETWEEN TWO COMMUNITY GRAPHS USING GRAPH MINING
TECHNIQUES

BAPUJI RAO AND ANIRBAN MITRA

Department of CSE & IT
V.I.T.A.M. Berhampur, Odisha, INDIA
{rao.bapuji, mitra.anirban}@gmail.com

PRASANTA PADHI

Sysnetglobal Tech.(Pvt) Ltd, DRM Office,
E.Co. Railway, Sambalpur, Odisha, INDIA

prasanta.pdhi@gmail.com

ABSTRACT: Among various available graph patterns, one can discover the frequent sub-
structures from a set of graphs. They are useful for characterizing graph sets, finding difference
among groups of graphs, classifying and clustering graphs, and building graph indices leading to
knowledge extraction. The Apriori-based approach, one such technique uses the breadth-first
search (BFS) strategy because of its level-wise candidate generation. In this paper, we have started
our work with representing the graphs, studying pattern growth and analysing the existing
algorithm. Further, we have proposed our derived technique in the same direction. Our proposed
technique is observed to be slightly efficient as compared to the existing algorithm. The paper
concludes with analysis on the proposed technique with supportive examples, output, results and
screen shot.

KEYWORDS: apriori, breadth-first search, community graph, community adjacency matrix,
graph mining.

INTRODUCTION

Among various kinds of graph patterns, it is possible to discover the frequent sub-structures from a
set of graphs. They are useful for finding difference among groups of graphs, classifying and
clustering graphs, and building graph indices. The discovery of frequent sub-structures usually
consists of two steps. In the first step, it generates frequent sub-structure candidates while the
frequency of each candidate is checked in the second step. Most studies are trying to discover
frequent sub-structures and the second step involvement of graph isomorphism which is NP-
complete.

The initial frequent sub-structure mining algorithm, called AGM, was proposed by Inokuchi et al.
[1], which shares similar characteristics with the Apriori-based item set mining [9]. The Apriori
property is also used by other frequent sub-structure discovery algorithms such as FSG [6] and the
path-join algorithm [8]. All of them require a join operation to merge two (or more) frequent sub-
structures into one larger sub-structure candidate. They distinguish themselves by using different
building blocks: vertices, edges, and edge-disjoint paths. In frequent sub-structure mining, Apriori-
based algorithms have two kinds of considerable overheads: (i) joining two size-k frequent graphs
(or other structures like paths [8]) to generate size-(k + 1) graph candidates, and (ii) checking the

177

frequency of these candidates separately. These overheads constitute the performance bottleneck
of Apriori-based algorithms.

The Apriori-based approach has to use the breadth-first search (BFS) strategy because of its level-
wise candidate generation. To determine whether a size-(k + 1) graph is frequent; it has to check
all of its corresponding size-k sub-graphs to obtain an upper bound of its frequency. Before mining
any size-(k + 1) sub-graph, the Apriori-based approach usually has to complete the mining of size-
k sub-graphs. Therefore, BFS is necessary in the Apriori-like approach. In contrast, the pattern
growth approach is more flexible on the search method. Both breadth-first search and depth-first
search (DFS) can work.

We have applied Apriori-based and pattern growth algorithms on our proposed social graph to
detect the frequent sub-structure.

GRAPH REPRESENTATION TECHNIQUES

A graph can be represented in memory broadly in two different ways [5, 7, 10, 11].

Sequential Representation
This representation of technique is further classified into two.

Adjacency Matrix
Let G be a graph with n nodes or vertices V1, V2,,Vn having one row and one column for each
node or vertex. Then the adjacency matrix A = [aij] of the graph G is the nXn square matrix,
which is defined as:

aij =

This kind of matrix contains only 0 and 1, is called bit matrix or Boolean matrix. In undirected
graph, the adjacency matrix will be a symmetric. For example in the given digraph G in Figure 1(i)
has vertices V = {A, B, C, D, E} and the set of edges E = {(A, B), (A, C), (B, D), (A, E)}. Then the
adjacency matrix of the graph G is shown in Figure 1(ii).

Figure 1. (i) Digraph G, (ii) Adjacency matrix of G

Path Matrix
The path matrix of graph G having n-vertices is the nXn square matrix, which is defined as:

1 if there is an edge from Vi to Vj

0 Otherwise

178

Pij =

The path matrix only shows the presence or absence of a path between a pair of vertices and also
about the presence or absence of a cycle at any vertex. It never says the total number of paths in a
graph. Let us consider a graph G = {A, B, C, D, E}. Its adjacency matrix and the final path
matrix P is shown in Figure 2. An edge shows from A to D in Figure 2(iii) which is the indication
of presence of path in the graph.

Figure 2. (i) Graph G, (ii) Adjacency matrix of G, (iii) Path matrix P of G

Linked List Representation
It consists of two types of lists, a node list and an edge list. A node list is a double linked list
whose node consists of three parts: Info, Next, and Adj. Info is the information part of a node or
vertex, Next is a pointer which holds address of next node of node list, and Adj is a pointer which
holds address of node of edge list where the actual adjacent is present. An edge list is a single
linked kind whose node consists of two parts: Node and Edge. Node is a pointer which holds
address of node of node list where the adjacent is present and Edge is also a pointer which holds
address of next node of edge list.

Figure 3. (i) Digraph G, (ii) Adjacency list of G

Let us consider a graph G = {A, B, C, D}. The adjacency list for the graph G is shown in Figure
3(ii). From this we can represent its linked list representation in the memory.

FREQUENT GRAPH

Given a labelled graph dataset, D = {G1, G2, . . ., Gn}, where frequency (g) is the number sub-
graphs in D. A graph is frequent if its support is not less than a minimum support of nodes or
vertices.

1 if there is a path from Vi to Vj via Vk

0 Otherwise

179

 Figure 4. Graph dataset D = { G1, G2, G3} Figure 5. Frequency graphs

Let us consider a sample graph which is shown in Figure 4, has three datasets D = {G1, G2, G3}.
We depict three frequent sub-graphs from the datasets D, which is shown in Figure 5. So the three
frequent sub-graphs {g1, g2, g3} frequencies are {2, 2, 3}.

APRIORI-BASED APPROACH

Apriori-based frequent item set mining algorithms developed by Agrawal and Srikant [9]. The
frequent graphs having larger sizes are searched in a bottom-up manner by generating candidates
having an extra vertex, edge, or path.

The process of Apriori-based methods is as follows. Sk is the frequent substructure set of size k. It
adopts a level-wise mining methodology. At each of the iteration, the sizes of newly discovered
frequent sub-structures are increased by one. New sub-structures are generated by joining two
similar but slightly different frequent sub-graphs. Then the newly formed graphs are checked for
their frequency. The detected frequent sub-graphs are used to generate larger candidates in the next
round.

The candidate generation for frequent item set is as follows. Let us consider two frequent item sets
of size 3 each :(pqr) and (qrs). It generates a candidate frequent item set of size 4 which is (pqrs).
Here two item sets are (pqr) and (qrs) are frequent. Then we check the frequency of (pqrs). So, the
candidate generation problem in frequent sub-structure mining becomes much harder than frequent
item set mining since there are different ways of joining two sub-structures.

Another kind of candidate generation strategies AGM [1] proposed a vertex-based candidate
generation method that increases the sub-structure size by one vertex at each iteration is also
follow the below algorithm logic. Two size-k frequent graphs are joined only when the two graphs
have same size-(k − 1) sub-graph. Here the size of a graph means the number of vertices in a
graph. The newly formed candidate includes the common size-(k − 1) sub-graph and the additional
two vertices from the two size-k patterns. Since it is undetermined whether there is an edge
connecting the additional two vertices, we actually can form two candidates. FSG proposed by
Kuramochi and Karypis [6] adopts an edge-based method that increases the substructure size by
one edge in each call of the below given Algorithm code. In this, two size-k patterns are merged if
and only if they share the same sub-graph that has k − 1 edges, which is called the core. Here the
size of a graph means the number of edges in a graph. The newly formed candidate includes the
core and the additional two edges from the size-k patterns.

Other Apriori-based methods such as the disjoint-path method proposed by Vanetik [8] use more
complicated candidate generation procedures. A sub-structure pattern with k + 1 disjoint path is
generated by joining sub-structures with k disjoint paths. Apriori-based algorithms have more
overheads while joining two size-k frequent sub-structures to generate size-(k + 1) graph

180

candidates. To avoid such overheads, we need to follow non-Apriori-based algorithms which have
been developed recently.

PATTERN GROWTH APPROACH

A graph can be extended by adding a new edge. The edge may or may not introduce a new vertex
to the newly formed graph. The extension of new graph may extend is in a forward or backward
direction. The algorithm discovers the same graph more than ones. This repeated discovery has to
be avoided. If there exist n different (n − 1)-edge graphs can be extended to the same n-edge
graph. It lacks the repeated discovery of the same graph. So the generation and detection of
duplicate graphs may cause additional workloads. To reduce the generation of duplicate graphs,
each frequent graph should be preserved as possible. This principle leads to the design of several
new algorithms such as gSpan [13], MoFa [2], FFSM [13], SPIN [4], and Gaston [12].

OUR PROPOSED APPROACH

We have studied the scenario of a social graph [10, 11], which consists of various villages in a
panchayat (panchayat is an Indian term for administration of villages). In a village different types
of communities live together and have connectivity. Taking this scenario into mind, one can
compare two community graphs for finding a similar sub-graph from it. For such case we have
proposed an algorithm for detecting frequent sub-graph between two community graphs. A simple
technique using graph theory is employed to detect the frequent sub-community graph between
two community graphs. The proposed algorithm has been given below.

Algorithm Frequent_Graph_Inbetween_2_Graphs (V1, S1, V2, S2) (Algorithm conventions [5])
V1 [1:S1, 1:S1]: Adjacency matrix of Community Graph-1.
V2 [1:S2, 1:S2]: Adjacency matrix of Community Graph-2.
Result [1: Size, 1: Size]: Global 2D-Array for representation of frequent graph's adjacency matrix.
Size: The unique communities from villages V1 and V2.

1. [Assign 0s to Result[][] Adjacency Matrix of Frequent Graph]
 Repeat For i:=1, 2,, Size:
 Repeat For j:=1, 2,, Size:
 Set Result[i][j] := 0.
 End For
 End For
 2. Set i := 2.
 Set j := 2.
3. Repeat While i<=S1
 Do
 (a) Repeat While j<=S2
 Do
 If V1[i][1] = V2[j][1],
 Then
 (i) Call Column_Compare (V1, S1, i, V2, S2, j).
 (ii) i:=i+1.
 (iii) j:=j+1.
 Else

181

 (iv) j:=j+1.
 End If
 End While
 (b) Set j := i.
 (c) i:=i+1.
 End While
4. Exit.

Procedure Column_Compare (V1, S1, r1, V2, S2, r2)
1. Set c1 := 2.
 Set c2 := 2.
2. Repeat While c1<=S1
 Do
 (a) Repeat While c2<=S2
 Do
 (a.1) If V1[1][c1] = V2[1][c2],
 Then
 [Edge between same pair of communities in both the graphs]
 If V1[r1][c1] = V2[r2][c2] = 1,
 Then
 [Finding actual row position of village in Result [][] Matrix]
 (i) Set row := 2.
 (ii) Repeat While TRUE
 Do
 If V1[r1][1]=Result[row][1],
 Then
 Break.
 Else
 row := row+1.
 End If
 End While
 [Show edge of same pair of communities in the Result [][] Matrix]
 (iii) Set p:=1.
 (iv) Repeat While TRUE
 Do
 (iv.a) If V1[1][c1]=Result[1][p],
 Then
 (I) Set Result[row][p] := 1.
 (II) Break.
 End If
 (iv.b) p:=p+1.
 End While
 End If
 (a.2) c1:=c1+1.
 (a.3) c2:=c2+1.
 Else
 (a.4) c2:=c2+1.
 End If [close of if(a.1)]

182

 End While [close of while (a)]
 (b) Set c2 := c1.
 (c) c1 :=c1+1.
 End While [close of while (2)]
3. Exit.

Example
Let us consider a community graph for villages V1, V2, V3, V4, V5, and V6 which is shown in Figure
6 [10, 11]. For villages V1, V2, V3, V4, V5, and V6, the communities are {C1, C2, C3, C4}, {C1, C2,
C3, C5}, {C1, C2, C3, C4, C5}, {C1, C3, C4, C8}, {C1, C2, C3, C5, C9, C10}, and {C2, C3, C4, C5, C8,
C9} respectively.

We have considered two community graphs for villages V3 and V5 which are shown in Figure 7(i)
and Figure 7(iii) for detection of a frequent sub-community graph. Its adjacency matrices are
shown in Figure 7(ii) and Figure 7(iv).

Figure 6. Community graph of villages V = {V1, V2, V3, V4, V5, V6 }

The above algorithm has to pass four parameters such as V3, 5, V5, and 6. Then the algorithm
combines both the communities V3 and V5. It able to find the order of resultant adjacency matrix
by finding the total number of unique communities (here it is 7). Then the adjacency matrix is
created of order 7 X 7 which is shown in Figure 8(iii). Then the final resultant matrix is formed by
calling the procedure Column_Compare (V1, S1, r1, V2, S2, r2) which is shown in Figure 9(i).

Finally by using the resultant matrix in Figure 9(i), we can draw the frequent sub-community
graph which is shown in Figure 9(ii).

183

 Figure 7. (i) Community graph of village V3
 (ii) Community graph of village V5
 (iii) Adjacency matrix of village V3
 (iv) Adjacency matrix of village V5

Figure 8. (i) Adjacency matrix of village V3
(ii) Adjacency matrix of village V5

(iii) Initial adjacency matrix Result [][]
of common community sub-graph

184

Figure 9. (i) Final adjacency matrix Result of common community sub-graph

between villages V3 and V5
(ii) The drawn common community sub-graph from villages V3 and V5

Example’s Output

CONCLUSIONS

Apriori-based approach uses the breadth-first search (BFS) strategy because of its level-wise
candidate generation. This paper initiate with a thorough analysis on this existing algorithm.

185

Further the authors have proposed their derived technique based on the Apriori-based approach. It
was observed that the proposed technique is slightly efficient as compared to the existing
algorithm. Results and observations on suitable examples were computed using the proposed
technique and its related sample output and have included to justify.

REFERENCES

A.Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructures from graph data. In Proceedings of 2000 European Symposium Principle of Data
Mining and Knowledge Discovery (PKDD’00), pp. 13–23, Lyon, France, Sept. 2000.

C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of
molecules. In Proceedings of 2002 International Conference on Data Mining (ICDM’02), pp.
211–218, Maebashi, Japan, Dec. 2002.

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism. In Proceedings of 2003 International Conference on Data Mining (ICDM’03), pp.
549–552, Melbourne, FL, Nov. 2003.

J. Prins, J. Yang, J. Huan, and W. Wang. Spin: Mining maximal frequent subgraphs from graph
databases. In Proceedings of 2004 ACM SIGKDD International Conference on Knowledge
Discovery in Databases (KDD’04), pp. 581–586, Seattle, WA, Aug. 2004.

Lipschutz, Seymour. Schaum‟s outline of Data Structures, Tata McGraw-Hill Publishing
Company Limited, 7 West Patel Nagar, New Delhi 110 008.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of 2001 International
Conference on Data Mining (ICDM’01), pp. 313–320, San Jose, CA, Nov. 2001.

Mitra A., Satpathy S. R. Paul S. : Clustering analysis in social network using Covering Based
Rough Set, Advance Computing Conference (IACC), 2013 IEEE 3rd International, India,
2013/2/22, 476-481, 2013.

N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured
data. In Proceedings of 2002 International Conference on Data Mining (ICDM’02), pp. 458–
465, Maebashi, Japan, Dec. 2002.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of 1994
International Conference Very Large Data Bases (VLDB’94), pp. 487–499, Santiago, Chile,
Sept. 1994.

Rao, Bapuji and Mitra, A. A New Approach for Detection of Common Communities in a Social
Network using Graph Mining Techniques. 2014 IEEE International Conference on High
Performance Computing & Application (ICHPCA-2014), Bhubaneswar, India, Dec 22-24,
2014.

Rao, Bapuji and Mitra, A. An Approach to Merging of two Community Sub-Graphs to form a
Community Graph using Graph Mining Techniques. 2014 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC-2014), Coimbatore, India, pp.
460-466, Dec 18-20, 2014.

S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. In
Proceedings of 2004 ACM SIGKDD International Conference on Knowledge Discovery in
Databases (KDD’04), pp. 647–652, Seattle, WA, Aug. 2004.

X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proceedings of 2002
International Conference on Data Mining (ICDM’02), pp. 721–724, Maebashi, Japan, Dec.
2002.

